Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 20, 2026
-
Physical states in nanoscale solids are tied to their crystalline order, morphology, and size. However, deterministically accessing different nanocrystal morphologies from a single phase usually involves complex synthetic routes, catalysts, or multi-step lithographic techniques. Here, we demonstrate the catalyst-free synthesis of nanosheets and nanowires based on the luminescent 2D van der Waals (vdW) phase, GaTe, as a model phase that manifests atomic precision and a highly anisotropic quasi-1D substructure. We program the size and morphology of the resulting nanostructures by varying the relative rates of precursor deposition and diffusion, achieving dense, uniform, and widespread growth. Ultrathin nanowires resulting from this synthesis exhibit strikingly enhanced low-temperature luminescence with narrow near-infrared (NIR) emission bandwidths. These spectral characteristics arise from defect-bound states confined within a nanowire morphology that acts as a deep sub-wavelength optical cavity, making them suitable as optical emitters with small footprints either as stand-alone structures or coupled with other vdW crystals.more » « lessFree, publicly-accessible full text available May 7, 2026
-
Confining materials to two-dimensional forms changes the behaviour of the electrons and enables the creation of new devices. However, most materials are challenging to produce as uniform, thin crystals. Here we present a synthesis approach where thin crystals are grown in a nanoscale mould defined by atomically flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mould made of hexagonal boron nitride, we grow ultraflat bismuth crystals less than 10 nm thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-moulded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov–de Haas quantum oscillations originating from the (111) surface state Landau levels. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW mould growth technique establishes a platform for electronic studies and control of bismuth’s Rashba surface states and topological boundary modes1,2,3. Beyond bismuth, the vdW-moulding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure.more » « less
-
Abstract The fine-tuning of topologically protected states in quantum materials holds great promise for novel electronic devices. However, there are limited methods that allow for the controlled and efficient modulation of the crystal lattice while simultaneously monitoring the changes in the electronic structure within a single sample. Here, we apply significant and controllable strain to high-quality HfTe5samples and perform electrical transport measurements to reveal the topological phase transition from a weak topological insulator phase to a strong topological insulator phase. After applying high strain to HfTe5and converting it into a strong topological insulator, we found that the resistivity of the sample increased by 190,500% and that the electronic transport was dominated by the topological surface states at cryogenic temperatures. Our results demonstrate the suitability of HfTe5as a material for engineering topological properties, with the potential to generalize this approach to study topological phase transitions in van der Waals materials and heterostructures.more » « less
An official website of the United States government
